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ABSTRACT

This thesis presents three fundamental research topics commonly discussed in Graph

Theory, an important area of Discrete Mathematics. Our objective is to propose

activities and problems that will strengthen the math skills of North Carolina high

school students as they meet a required competency goal in Discrete Mathematics. For

this reason, we discuss several topics such as Spanning trees, Minimum Spanning trees,

Euler and Hamilton Graphs, and Vertex Coloring. Activities for practice and several

applied problems are proposed with detailed solutions to achieve several learning

objectives.
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Chapter 1 Introduction

Mathematics is one of the core subjects of the world's educational system. In the state

of North Carolina high school students are required to successfully achieve twenty-two

credits to graduate from high school, four of which must be in math. The courses

are Math I, Math II, Math III, with the fourth math course to be aligned with

the student's post high school plans. According to North Carolina Standard Course

Of Study (NCSCOS) [3], the choices for the 4th Level Math Courses are Advance

Functions and Modeling, Integrated Math IV, Pre-Calculus, and Discrete Math. This

thesis focuses on the fourth level math course�Discrete Mathematics by introducing

related topics and activities that are designed to strengthen students core skills in

this area of Math. These topics, although simple, are often discussed both at the

college and graduate school levels, in a speci�c course called Graph Theory. As such,

we introduce the reader or the student to some basic concepts of graph theory at the

same time as we deliver core math skills for the state high school �nal exam. We also

note several recent researchers also tried to discuss similar graph theory topics that

are deemed accessible to high school students in other states. See [6], for instance.

The thesis is brie�y outlined as follows: In this introductory chapter (Chapter

1) we discuss the compentency goal and objectives as we introduce the reader to

some basic de�nitions and notions of graph theory. In Chapter 2, we introduce

the �rst topic, Spanning trees, which meets two learning objectives. In chapter 3,

we introduce the second topic, Euler and Hamiltonian Graphs, as we meet another

learning objective. In Chapter 4, we introduce the third topic, Vertex coloring, as

we reinforce the same learning objective covered by the topic discussed in Chapter

3. Related activities, and application problems are given with their solutions at the

end of each Chapter. We close the thesis with a possible research direction and
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some recommendations in Chapter 5. Several acronyms we used are de�ned in the

Appendix 5.

1.1 NC High School Math

Discrete Mathematics introduce students to the mathematics of networks, social

choice and decision making. The course extends students' applications of matrix

arithmetic and sometimes probability. Applications and modeling are central to this

course of study. Modeling in general is one of the required NC HS Standards for

Mathematical Practice. For example, in NC Math I and NC Math II modeling makes

an appearance in F-LE. 1-5, A-CED.1-3, and S-ID.7-9. However, the only place that

an entire unit focused on mathematical modeling appears in the NC HS Collaborative

Instructional Framework is in NC Math III�Modeling with Geometry unit . These

acronyms are others can be found in the Appendix 5.

Moreover, seniors enrolled in Discrete Mathematics in the state of North Carolina

are required to take a �nal exam issued by the state. According to the North Car-

olina Assessment Speci�cations (NCAS) of the 2018-2019 North Carolina Final Exam

(NCFE) of Discrete Mathematics, the purpose of the assessment is to measure stu-

dents' academic progress on the North Carolina Standard Course of Study adopted by

the North Carolina State Board of Education (NCSBE) in June 2003. The NCSBE

policy TEST-016 directs schools to use the results from all course-speci�c NCFEs as

a minimum of twenty percent (20%) of the student's �nal course grade. A school

district can assign a higher percentage to the �nal exam, if they so choose. The

Discrete Mathematics course covers 3 main goals or competencies and each goal has

3-7 objectives. Goal 1 focuses on Graph Theory, Goal 2 focuses on Probability and

Statistics while Goal 3 focuses on Recurssions and Series. This thesis focuses only on

Competency Goal 1 and its objectives which account for about (30%) of discrete

math course standard requirement as stated in [4]. We state this goal and list its 3

main objectives; we note that they are not equally weighted as shown in Table1.1.

COMPETENCY GOAL: The learner will use matrices and graphs to

2



model relationships and solve problems.

1.01.a�Use matrices to model and solve problems.

1.01.b�Write and evaluate matrix expressions to solve problems.

1.02�Use graph theory to model relationships and solve problems.

Table 1.1: Test Speci�cation Weights for the Discrete Mathematics NCFE 2003 Stan-
dard Course of Study [4]

Standard Percent of Total Score Points
1.01 ≈ 18%
1.02 ≈ 12%
2.01 ≈ 15%
2.02 ≈ 24%
2.03 ≈ 21%
3.01 ≈ 9%
Total 100%

1.2 Mathematical Modeling

Mathematical modeling refers to the use of mathematical approaches to understand

and make decisions about real world phenomena (See[2]). The modeling process starts

and ends in a real-world context. The diagram below represents a �ow chart of the

process.

Figure 1.1: Mathematical Modeling Process

The �rst phase requires that students identify variables, essential features of the

context, and make assumptions to narrow the messiness of the problem. In the next

phase, formulation or representation, students mathematize the problem by creating

and selecting geometric, algebraic, or statistical representations that describe the

relationships between the variables. What they obtain is themathematical model.

3



For our purpose, we will be using graphs to represent our mathematical model of

a real world problem. Graphs are discrete structures consisting of vertices and edges

that connect these vertices. There are di�erent kinds of graphs, depending on whether

edges have directions, whether multiple edges can connect the same pair of vertices,

and whether loops are allowed. For the purpose of this thesis loops will not be allowed.

In almost every conceivable discipline problems can be solved using graph models.

Some examples are graphs to model acquaintanceships between people, collaboration

between researchers, telephone calls between telephone numbers, and links between

websites. Graphs can also be used to model roadmaps and the assignment of jobs to

employees of an organization.

1.3 Basic Graph Theory

Graph theory began in 1736 when Leonard Euler published a paper that contained

the solution to the 7 bridges of Konigsberg (see Figure 1.2 left) problem. Is it pos-

sible to take a walk around town crossing each bridge exactly once and wind up at

your starting point? A graph (vertices and links) is used to model or represent the

Konigsberg problem (see Figure 1.2 right). The answer to this problem is �no�. The

reason is discussed in Chapter 3. To help provide a solution to this problem, Euler

used a drawing or a model that we call graphs, that reduces the problem down to its

important elements, thus avoiding unnecessary details. We begin by introducing the

basic information about graphs.

Figure 1.2: Konigsberg city and its corresponding graph model

4



1.4 Basic de�nitions

A simple graph G = (V,E) consists of V = V (G), a nonempty set of objects called

vertices (or nodes) and E = E(G), a set of an unordered pair of distinct vertices

called edges.

Figure 1.3: Example of a simple graph on 6 vertices

See Figure 1.3, for example. Vertices, say u and v that share an endpoint are said

to be adjacent; u is also said to be a neighbor of v and vice-versa the edge denoted

by uv is said to be incident to the vertices u and v. The order of the graph G is the

size of its vertex set which we denote by |V | and the size of the edge set, denoted by

|E|, is called size of the graph G. The degree of vertex, v denoted by deg(v), is the

number of edges incident to v ; that is the size of its neighbor. A vertex of degree 0 is

said to be isolated while a vertex of degree 1 is called a leaf. Theminimum degree

of G, denoted by δ(G) , is its smallest vertex degree, and the maximum degree of

G denoted by ∆(G) is the largest degree among its vertices. A vertex u is said to be

connected to a vertex v, in a graph G, if there exists a sequence of edges (or path)

from u to v in G. A graph G is connected if there is a path that connects every two

of its vertices. There are other types of graphs such as multigraphs (when multiple

edges are allowed between vertices), pseudographs (when a vertex is allowed to be

connected to itself, as in a loop) and directed graphs (when each edge is given an

orientation, using an arrow). However, our Thesis will focus only on simple graphs,

as previously de�ned.
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1.5 Special Graphs

Here, we present some common special graphs.

1.5.1 Subgraphs

Given a graph G with vertex set V (G) and edge set E(G), we call a graph H a

subgraph of G if the vertex set V (H) ⊆ V (G) and the edge set E(H) ⊆ E(G); H is

obtained from G by deleting edges (including incident vertices) and/or vertices from

G. Below is an example of a graph G called Wheel, and its subgraph H (in red) called

cycle; it is obvious that H is obtained from G by deleting the middle vetex and its

incident edges.

Figure 1.4: A Wheel graph G and its subgraph H

1.5.2 Spanning subgraphs

Suppose H is a subgraph of G. If V (H) = V (G) and E(H) ⊆ E(G), then H is said

to span G. For example, from the Wheel graph G, we can obtain the spanning graph

H (in red), called a Star graph. See Figure 1.5 for an example.

Figure 1.5: A Wheel graph G and its spanning subgraph H

6



1.5.3 Paths

A path of length n, denoted by Pn, is a graph that has exactly 2 leaves and every

other vertex is of degree 2. Below is an example of a P3.

Figure 1.6: A Path on 3 vertices

1.5.4 Cycles

A cycle on n vertices, denoted by Cn is a graph with exactly one closed path. Here

is a C5, a cycle on 5 vertices.

Figure 1.7: A Cycle on 5 vertices

1.5.5 Trees

A tree also known as an acyclic graph on n vertices, denoted by Tn is a graph with

no cycle. Here is a T6, a tree on 6 vertices.

Figure 1.8: A tree on 6 vertices
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1.5.6 Complete graphs

A complete graph also known as cliques on n vertices, denoted by Kn is a graph

where every pair of vertices are adjacent. Below is a family of complete graphs, K2,

K3, K4, and K5 (from left to right).

Figure 1.9: A family of four complete graphs

1.5.7 Bipartite graphs

A simple graph G = (V,E) is called bipartite if its vertex set be divided into two

disjoint groups, with edges connecting vertices from one group to the other; no edge

connects vertices within the same group. We note that when each vertex from one

group is connected to each vertex from the group, the resulting bipartite graph is

said to complete; we write Km,n where m, n, are the sizes of the two groups. Below

is complete bipartite graph K3,2.

Figure 1.10: A complete bipartite graph with parts sizes 3 and 2

1.6 Activity: Basic graph notion

I. Practice:

8



Given the graph in Figure 1.3, answer the following questions.

(a) List out the elements of each of these two sets: V (G) and E(G).

(b) List the degrees of each vertex of G.

(c) What is the value of ∆(G)?

(d) What is the value of δ(G)?

(e) True or False:

(i) The sum of the degrees of G is twice the size of G.

(ii) The sum of the degrees of G is twice the order of G.

(f) Give an example of a connected subgraph of G consisting of four vertices.

(g) Give an example of a connected subgraph of G that contains no cycle.

(h) Give an example of a connected spanning subgraph of G of size 5 that contains

no cycle.

(i) Is the graph G connected?

(j) Draw the following connected graphs: K6, K3,3, and T7 with a maximum degree

5.

II. Application:

The intersection graph of a collection of sets A1, A2, . . . , An is the graph that has a

vertex for each of these sets and has an edge connecting the vertices representing two

sets if these sets have a nonempty intersection. Construct/draw the intersection graph

of these collections of sets (label the vertices appropriately). A1 = {0, 2, 4, 6, 8}, A2 =

{0, 1, 2, 3, 4}, A3 = {1, 3, 5, 7, 9}, A4 = {5, 6, 7, 8, 9}, A5 = {0, 1, 8, 9}.

Note: Although we are proposing only 1 applied problem here, several application

questions in the upcoming chapters give the student additional modeling problems

which require graph drawings.

9



1.7 Answers

I. Practice:

(a) Vertex set: V (G) = {a, b, c, d, e, f}; Edge set: E(G) = {ad, af, bd, be, cd, ce}.

(b) Vertices degrees: deg(a) = 2, deg(b) = 2, deg(c) = 2, deg(d) = 4, deg(e) = 2,

deg(f) = 2.

(c) The maximum degree is ∆(G) = 4.

(d) The minimum degree is δ(G) = 2.

(e) True or False:

(i) True�each edge contributes to two vertices, hence two degrees. So the sum

of its degrees is 2 + 2 + 2 + 2 + 2 + 2 + 4 = 14 = 2× 7, since G has 7 edges,

which is its size.

(ii) False�The order (number of vertices) of the graph is 6, while the sum of

its degrees is 2 + 2 + 2 + 2 + 2 + 2 + 4 = 14.

(f) The cycle with vertices b, a, c, e from G.

(g) A Star on 5 whose vertices are d, f, a, b, c .

(h) Example of a connected spanning subgraph of G that contains no cycle.

(i) Yes, since no vertex is isolated.

(j) Below are the graphs (from left to right) K6, a complete graph on 6 vertices,

K3,3, a complete bipartite graph and T7, a tree with a maximum degree 5.

10



II. Application:

The vertices are A1, A2, . . . , A5. Two vertices are connected, if their corresponding

sets share an element. For instance, A1 and A2 have at least one element (0, 2, 4) in

common, thus they will be connected while, A1 and A3 don't have any member in

common; they will not be connected. See Figure 1.11, for a possible drawing.

Figure 1.11: Intersection graph
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Chapter 2 Spanning Trees

This chapter is designed to prepare the student for NCSBE competency goal 1�

objectives 1.0.1.a and 1.0.1.b.

2.1 De�nition

A spanning tree of a connected graph G is a tree that is a subgraph of G and

contains every vertex of G. Below is a graph G and two of its subgraphs H1 and H2.

Figure 2.1: A Wheel graph with two of its spanning trees

2.2 Number of spanning trees subgraphs

There are several ways to represent graphs using matrices. We list here four kinds,

although only the last three will be important for us to compute the number of

spanning trees in a graph.

2.2.1 Incidence Matrix

LetG = (V,E) be a simple. Suppose that v1, v2, . . . , vn are the vertices and e1, e2, . . . , em

are the edges of G. Then the incidence matrix with respect to this ordering of V and

12



E is the n×m matrix M = [mij], where

mi,j =


1 when the edge ej is incident with vi

0 otherwise.

2.2.2 Adjacency Matrix

Another common way to represent graphs is through adjacency matrices. It is a square

matrix with entries 0 or 1; 1 when a pair of vertices are adjacent and 0 otherwise.

2.2.3 Degree Matrix

A degree matrix is a diagonal matrix with vertex degrees on the diagonals, and 0's

o�-diagonal.

2.3 Laplacian Matrix

Given a simple graph G with n vertices, its Laplacian matrix is the square matrix L,

which is computed by

L = D − A,

where D is the degree matrix and A is the adjacency matrix of the graph.

2.3.1 Counting spanning trees

Let A be a square matrix. The minor of the element aij is denoted by Mij and is

the determinant of the matrix that remains after deleting row i and column j of A.

The cofactor of aij denoted by Cij is given by

Cij = (−1)i+jMij.

We assume the reader is capable of computing the determinant of a 2× 2 matrix

13



and so we begin by reminding the reader about how to compute the determinant of

a 3× 3 matrix using a well-known formula:

det


a b c

d e f

g h i

 = a · det

e f

h i

− b · det

d f

g i

 + c · det

d e

g h



Example 2.3.1. Find det(A), the determinant of the given matrix A.

A =


2 −1 2

−1 2 1

4 3 1

 .

Using the previous formula, we obtain

det


2 −1 2

−1 2 1

4 3 1

 = 2 · det

2 1

3 1

 − (−1) det

−1 1

4 1

 + 2 · det

−1 2

4 3


= 2 (−1)− (−1) (−5) + 2 (−11) = −29

Example 2.3.2. Determine the minors and the cofactors of the elements a11 and a32

of the following matrix A.

A =


1 0 3

4 −1 2

0 −2 1


Solution: Applying the above de�nitions, we get the following:

(i.) Minor of a11: after deleting row 1 and column 1 of A, we obtain the resulting ma-

trix

−1 2

−2 1

 whose determinant we compute. Thus, M11 = det

−1 2

−2 1

 =

(−1× 1)− (2× (−2)) = 3.

(ii.) The cofactor of a11 = (−1)1+1M11 = (−1)2M11 = (1)(3) = 3.

Similarly, we have
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(iii.) Minor of a32: after deleting row 3 and column 2 of A, we obtain the resulting

matrix

1 3

4 2

 whose determinant we compute. Thus, M11 = det

1 3

4 2

 =

(1× 2)− (3× 4) = −10.

(iv.) The cofactor of a32 = (−1)3+2M32 = (−1)5M32 = (−1)(−10) = 10.

The number of distinct spanning trees in a graph can be computed in polynomial

time throughKirchho�'s (matrix-tree) theorem[1] which states that such number

is equal to any cofactor of its Laplacian matrix.

Example 2.3.3. Determine the number of spanning trees of the graph G below.

Figure 2.2: A graph G

Solution:

(i.) First, we compute the Adjacency Matrix A and the Degree Matrix D of G.

A =



a b c d

a 0 1 1 1

b 1 0 1 0

c 1 1 0 0

d 1 0 0 0


D =



a b c d

a 3 0 0 0

b 0 2 0 0

c 0 0 2 0

d 0 0 0 1


(ii.) Next, we determine the Laplacian matrix of G by computing L = D − A.

L =



3 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1


−



0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0


=



3 −1 −1 −1

−1 2 −1 0

−1 −1 2 0

−1 0 0 1


15



(iii.) Finally we use any of the entries to compute the cofactor of L. Using, say, a11,

we have:

(a.) the minor of a11 is M11 = det


2 −1 0

−1 2 0

0 0 1

 = 3.

(b.) the cofactor of a11 = (−1)1+1M11 = (−1)2M11 = (1)(3) = 3.

Here are the 3 spanning trees of the graph G in Figure2.3.

Figure 2.3: The three spanning trees of G.

Remark 2.3.1. It is obvious that for any element ai,j, |Mij| = |Cij|, we recommend

�nding the number of spanning trees by simply computing |Mij|.

2.4 Minimum spanning trees

A graph whose edges are labeled with numbers (known as weights) is called a

weighed graph. See Figure 2.4, for instance of a graph G where the vertices rep-

resent 12 nodes and the edges are weighted according to the distance between these

nodes.

A minimum-weight spanning tree, or simply a minimum spanning tree, is a

spanning tree for which the sum of the weights of all the edges is as small as possible.

There are few known algorithms for �nding the minimum spanning tree of a given

graph. Here, we discuss two commonly used.

2.4.1 Kruskal's algorithm

Description:
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Figure 2.4: A weighted communication graph G.

In Kruskal's algorithm, the edges of a connected weighted graph are considered

one-by-one in an increasing order of weights (Step 1). At each stage the edge being

considered is added (or highlighted) to what will become the minimum spanning tree,

as long as that this addition does not create a circuit or cycle; in which case we discard

that edge (Step 2). After n− 1 edges are added we stop, as we have a tree which is

considered a minimum spanning tree for the graph.

Example 2.4.1. Use Kruskal's algorithm to �nd the minimum spanning tree of the

graph G in Figure 2.4.

Let's consider the graph in Figure 2.4 and apply Kruskal's Algorithm. We �rst

note the weights of each edge. cd = 1, bf = 1, kl = 1, ab = 2, cg = 2, fj = 2, bc = 3,

ae = 3, fg = 3, gh = 3, ij = 3, and jk = 3. For simplicity we can present our list as

follows: (1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3).

Step 2: We break ties arbitrarily and proceed with �highlighting� the correspond-

ing edges cd, bf, kl, ab, cg, fj, bc, ae, gh, ij, and jk. We highlight edge cd �rst. Then,

bf , kl, ab, cg, fj, bc, gh, ij, and jk are highlighted in that order. Edge fg is not

highlighted or discarded because it will create a cycle. Since the graph has n = 12

vertices, we continued until we have all n − 1 = 11 edges of the graph highlighed.

A spanning tree is obtained, and the resulting minimum spanning tree has a total

weight of 1 + 1 + 1 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3 = 24.

17



2.4.2 Prim's algorithm

Prim's algorithm was originally discovered by the Czech mathematician Vojtech

Jarnik in 1930, and it was later rediscovered in 1957 by Robert Prim, an Ameri-

can mathematician.

Description:

1. Begin by choosing any edge with smallest weight (Ties are broken arbitrarily).

Then we highlight it.

2. Find the edge that is not highlighted with the smallest weight but is connected

to one of the endpoints of a highlighted edge. Skip any edge that will produce

a circuit.

3. Repeat this process until all vertices are adjacent to a highlighted edge; meaning

they are all covered.

Figure 2.5: A weighted graph G.

Example 2.4.2. Use Prim's algorithm to design a minimum-cost communications

network connecting all the twelve computers represented by the graph in Figure 2.5.

We look at Figure 2.5 and apply Prim's Algorithm. Applying Step 1 we can see

that the edge representing the distance between Grand Rapids and Kalamazoo has

the smallest weight (distance = 56). Therefore, we highlight the edge between Grand

18



Rapids and Kalamazoo and circle the vertex at Grand Rapids and the vertex at Kala-

mazoo. Applying Step 2 we can see that the edge representing the distance between

Grand Rapids and Saginaw (distance = 113) is the smallest weight among the re-

maining routes connected to either Grand Rapids or Kalamazoo. So, we highlight

the edge between Grand Rapids and Saginaw as part of Step 2. We repeat Step 2

until all vertices are incident to a highlighted route. We highlight the edge between

Saginaw and Detroit (distance = 98). The smallest route leaving Toledo goes to

Detroit (distance = 58). We highlighted it as the last route and note that all cities

are reached by a highlighted route. The minimum spanning tree has a total weight

of 56 + 113 + 98 + 58 = 325.

Figure 2.6: Some simple graphs P,Q, and R.

Figure 2.7: Some graphs S, T, and U .

2.5 Activity: Spanning trees of a graph

I. Practice:
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Figure 2.8: Some weighted simple graphs V,W, and X.

1. For each of the following graphs P,Q, and R in Figure 2.6, determine the

number of its spanning trees subgraphs.

2. For each of the following graphs S, T, and U in Figure 2.7, determine the

number of its spanning trees subgraphs.

3. For each of the following graphs V,W, and X in Figure 2.8, determine the

minimum spanning tree using:

(i) Prim's algorithm

(ii) Kruskal's algorithm.

II. Application

1. A company plans to build a communications network connecting its �ve com-

puter centers as shown in Figure 2.9. Any pair of these centers can be linked with

a leased telephone line. Which links should be made to ensure that there is a path

between any two computer centers so that the total cost of the network is minimized?

2. The roads represented in the graph in Figure 2.10 by these towns in Nevada

are all unpaved. The lengths of the roads between pairs of towns are represented by

edge weights. Which minimum road length that guaranties a path of paved roads

between each pair of towns?

2.6 Answers

I. Practice:
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Figure 2.9: A Weighted Graph Showing Monthly Lease Costs for Lines in a Computer
Network

1. We present the elements of the adjacency and the degree matrices in the order

that corresponds to the alphabetical order of the vertices of the graph.(a) Number of

spanning trees for graph P .

A =



0 1 0 1 1

1 0 1 0 0

0 1 0 1 1

1 0 1 0 0

1 0 1 0 0


; D =



3 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 2 0

0 0 0 0 2


; L =



3 −1 0 −1 −1

−1 2 −1 0 0

0 −1 3 −1 −1

−1 0 −1 2 0

−1 0 −1 0 2


.

Now we compute, say, M11 = det



2 −1 0 0

−1 3 −1 −1

0 −1 2 0

0 −1 0 2


= 12.

(b) Number of spanning trees for graph Q.

A =



0 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0


; D =



2 0 0 0

0 3 0 0

0 0 2 0

0 0 0 3


; L =



2 −1 0 −1

−1 3 −1 −1

0 −1 2 −1

−1 −1 −1 3


. Now we com-

21



Figure 2.10: A Weighted Graph of some towns in Nevada

pute, say, M11 = det


2 −1 −1

−1 2 −1

−1 −1 3

 = 8.

(c) Number of spanning trees for graph R.

A =



0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0


; D =



2 0 0 0

0 3 0 0

0 0 2 0

0 0 0 1


; L =



2 −1 −1 0

−1 3 −1 −1

−1 −1 2 0

0 −1 0 1


. Now we com-

pute, say, M11 = det


3 −1 −1

−1 2 0

−1 0 1

 = 3.

2. (a) Number of spanning trees for graph S.
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A =



0 1 1 0 1

1 0 1 0 1

1 1 0 1 0

0 0 1 0 1

1 1 0 1 0


; D =



3 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 2 0

0 0 0 0 3


; L =



3 −1 −1 0 −1

−1 3 −1 0 −1

−1 −1 3 −1 0

0 0 −1 2 −1

−1 −1 0 −1 3


.

Now we compute, say, M11 = det



3 −1 0 −1

−1 3 −1 0

0 −1 2 −1

−1 0 −1 3


= 24.

(b) Number of spanning trees for graph T .

A =



0 0 1 1 1

0 0 1 0 1

1 1 0 1 1

1 0 1 0 1

1 1 1 1 0


; D =



3 0 0 0 0

0 2 0 0 0

0 0 4 0 0

0 0 0 3 0

0 0 0 0 4


; L =



3 0 −1 −1 −1

0 2 −1 0 −1

−1 −1 4 −1 −1

−1 0 −1 3 −1

−1 −1 −1 −1 4


.

Now we compute, say, M11 = det



2 −1 0 −1

−1 4 −1 −1

0 −1 3 −1

−1 −1 −1 4


= 40.

(c) Number of spanning trees for graph U .

A =



0 1 1 0 1

1 0 0 1 1

1 0 0 1 1

0 1 1 0 1

1 1 1 1 0


; D =



3 0 0 0 0

0 4 0 0 0

0 0 4 0 0

0 0 0 3 0

0 0 0 0 6


; L =



3 −1 −1 0 −1

−1 4 0 −1 −1

−1 0 4 −1 −1

0 −1 −1 3 −1

−1 −1 −1 −1 6


.

Now we compute, say, M11 = det



4 0 −1 −1

0 4 −1 −1

−1 −1 3 −1

−1 −1 −1 6


= 184.

3. Finding the minimum spanning trees

23



(a) Graph V :

(i) Prim's algorithm

Applying Step 1 we can see that the edge between vertices a and b and the edge

between vertices c and d have the smallest weight (ab = 1; cd = 1). We will highlight

edge ab and circle vertices a and b. Applying Step 2 we can see that the edge between

vertices a and e has the smallest weight (ae = 2) among the remaining unhighlighted

edges that have one circled vertex and one uncircled vertex. Therefore, we highlight

edge ae and circle the vertex e. Step 3 states to repeat Step 2 until all vertices are

circled. Hence, we now highlight edge ed (ed = 2) and circle vertex d. Lastly we

highlight edge cd (cd = 1) and circle vertex c. Now every vertex has been circled and

connected. Our minimum spanning tree is 1 + 2 + 2 + 1 = 6.

(ii) Kruskal's algorithm

Step 1 states to verify that our graph is connected, which we can easily that it

is. According to Step 2 we are to create a list: ab = 1, cd = 1; ae = 2, de = 2; bd =

3, be = 3, ce = 3; and ac = 4. For the edges that have the same weight it does not

matter which edge you list �rst. Through Steps 3 and Step 4 we can highlight edges

ab, ae, de, and cd. According to Step 3 we highlight edge ab �rst. Now applying Step

4, edges ae, de, and cd are highlighted in that order. Edges ac, bd, be, and ce are

not used because they would create cycles. Since the graph has 5 vertices, Step 4 is

continued until we have all n− 1 or 4 edges of the graph highlighted. From Step 5 we

can see that we have constructed our minimum spanning tree with a minimal weight:

1 + 2 + 2 + 1 = 6.

(b) Graph W :

(i) Prim's algorithm

Applying Step 1 we can see that the edge between vertices e and f has the smallest

weight (ef = 1). We will highlight edge ef and circle vertices e and f . Applying Step

2 we can see that the edges between vertices c and f (cf = 3) and e and h (eh = 3)

have the smallest weight among the remaining unhighlighted edges that have one

circled vertex and one uncircled vertex. Therefore, we highlight edge cf (cf = 3)
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and circle vertex c. Step 3 states to repeat Step 2 until all of the vertices are circled.

Hence, we see that edge eh (eh = 3) has the smallest weight from the remaining

unhighlighted edge with one circled vertex and one uncircled vertex. Therefore, we

highlight edge eh and circle vertex h. Continuing the process, edge hi (hi = 2) has

the smallest weight from the remaining unhighlighted edges with one circled vertex

and one uncircled vertex. We now highlight edge hi and circle vertex i. Edge bc

(bc = 2) between vertices b and c and edge gh (gh = 2) between vertices g and h have

the smallest weight among the remaining unhighlighted edges with one circled vertex

and one uncircled vertex. We will highlight edge bc and circle vertex b. Edge bd

(bd = 3) has the smallest weight among the remaining unhighlighted edges with one

circled vertex and one uncircled vertex. Thus, we highlight edge bd and circle vertex

d. Next, we see that between vertices a and d edge ad (ad = 2) has the smallest weight

among the remaining unhighlighted edges with one circled vertex and one uncircled

vertex. Hence, we highlight edge ad and circle vertex a. Lastly, we highlight edge gh

(gh = 4) and circle vertex g. All vertices of graph W are now circled and connected.

Our minimum spanning tree is 1 + 3 + 3 + 2 + 4 + 3 + 2 + 4 = 22.

(ii) Kruskal's algorithm

Step 1 states to verify that our graph is connected, which we can easily see that

it is. According to Step 2 we are to create a list: ef = 1, ad = 2, hi = 2; bd =

3, cf = 3, eh = 3; bc = 4, fh = 4, fi = 4, gh = 4; ab = 5be = 5; bf = 6, dg =

6; de = 7, and dh = 8. For the edges that have the same weight, it doesn't mat-

ter which edge you list �rst. Through Step 3 and Step 4 we can highlight edges

ef, ad, hi, bd, cf, eh, bc, and gh. According to Step 3 we highlight edge ef �rst. Now

applying Step 4, edges ad, hi, bd, cf, eh, bc, and gh are highlighted in that order.

Edges fh, fi, ab, be, bf, dg, de, anddh are not highlighted because they will create cy-

cles. Since graph W has 9 vertices, Step 4 is continued until we have all n− 1 edges

or 8 edges of the graph highlighted. From Step 5 we can see that we have constructed

our minimum spanning tree with a minimal weight 1 + 2 + 2 + 3 + 3 + 3 + 4 + 4 = 22.

(c) Graph X:

(i) Prim's algorithm
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Applying Step 1 we can see that the edge between vertices a and b, (ab = 1), the

edge between vertices a and e (ae = 1), the edge between vertices c and d, (cd = 1),

and the edge between vertices d and h (dh = 1) have the same smallest weight.

We will highlight edge ab and circle vertices a and b. Applying Step 2 we can see

that the edge between vertices a and e (ae = 1) is the smallest weight among the

remaining unhighlighted edges that have one circled vertex and one uncircled vertex.

Therefore, we now highlight edge ae and circle vertex e. Step 3 states to repeat

Step 2 until all vertices are circled. Hence, we now highlight edge bc, (bc = 2) and

circle vertex c from the remaining unhighlighted edges with one circled vertex and

one uncircled vertex. Next, edge cd (cd = 1) is highlighted and vertex d is circled.

Continuing, edge dh (dh = 1) is highlighted and vertex h is now circled. Edge gh,

(gh = 2), is now highlighted and vertex g is circled. Next, edge ef , (ef = 2), is

highlighted and vertex f is circled. Edge ei, (ei = 2), is now highlighted and vertex

i is circled. Edge ij, (ij = 3), is now highlighted and vertex j is circled. Continuing

the process, edge im, (im = 3) is highlighted and vertex m is circled. Next, edge

mn, (mn = 2), is highlighted and vertex n is circled. Edge no, (no = 2), is now

highlighted and vertex o is circled. Edge op, (op = 3) is highlighted next and vertex

p is circled. Edge lp, (lp = 2), is highlighted and vertex l is now circled. Lastly,

edge kl, (kl = 3) is highlighted and vertex k is circled. Now all of the vertices

of graph X have been circled and connected yielding a minimum spanning tree of

1 + 1 + 2 + 1 + 1 + 2 + 2 + 2 + 3 + 3 + 2 + 2 + 3 + 2 + 3 = 30.

(ii) Kruskal's algorithm

Step 1 states to verify that graph X is connected, which we can easily see that

it is. According to Step 2 we are to create a list: ab = 1, ae = 1, cd = 1, and

dh = 1; ad = 2, am = 2, bc = 2, dp = 2,mp = 2, gh = 2, ef = 2, ei = 2,mn = 2, no =

2, lp = 2; bf = 3, cg = 3, fg = 3, fj = 3, ij = 3, im = 3, hl = 3, kl = 3, ko = 3, op = 3;

and gk = 4, jk = 4, and jn = 4. For the edges that have the same weight, it

doesn't matter which edge you list �rst. Through Step 3 and Step 4 we can high-

light edges ab, ae, bc, cd, dh, gh, ef ,ei, ij, im,mn, no, op, lp, and kl. According to Step

3 we highlight edge ab �rst. Now applying Step 4, edges ab, ae, bc, cd, dh, gh, ef,
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ei, ij, im,mn, no, op, lp, and kl are highlighted in that order. Edges ad, am, dp, mp, bf, cg, fg, fj, hl, ko, gk, jk,

and jn are not highlighted because they will create cycles. Since graph X has 16 ver-

tices, Step 4 is continued until we have all n− 1 or 15 edges of the graph highlighted.

From Step 5 we can see that we have constructed our minimum spanning tree with a

minimal weight 1 + 1 + 2 + 1 + 1 + 2 + 2 + 2 + 3 + 3 + 2 + 2 + 3 + 2 + 3 = 30. Figure

2.11 shows an example of a minimum spanning tree for the graph X.

Figure 2.11: A minimum spanning tree of Graph X from Figure 2.8

II. Applications:

1. This problem is applicable to �nding a minimum spanning tree. As such we

will use Prim's algorithm for Figure 19 to �nd which links should be made to ensure

that there is a path between any two computer centers so that the total cost of the

network is minimized. Applying Step1 we can see that the link between Chicago and

Atlanta has the lowest cost of amount of $350. This edge (link) is highlighted and

vertices Chicago and Atlanta are circled. Applying Step 2, the edge between Atlanta

and New York has the lowest cost, $400, of the remaining unhighlighted edges with

one circled vertex and one uncircled vertex and is therefore, highlighted and the New

York vertex is circled. Continuing the process, the Chicago to San Francisco link,

$600, is highlighted and vertex San Francisco is circled. Finally, we highlight the

San Francisco to Denver link, $450, and circle vertex Denver. All vertices are now

circled and connected producing a minimum spanning tree with a minimal cost of

$350 + $400 + $600 + $450 = $1800.

2. We use Prim's algorithm to �nd a path of paved roads between each pair of

towns with a minimum road length. The solution is as follows: Deep Springs � Oasis

= 10; Oasis � Dyer = 21; Oasis - Silver Pea = 23; Silver Pea � Gold�eld = 20;

Gold�eld � Lida = 20; Lida � Gold Point = 12; Gold�eld � Tonopah = 35; Tonopah
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� Manhattan = 25; Beatty � Goldpoint = 45; and Tonopah � Warm Springs = 55.

This pathway of roads is our minimum spanning tree with a total road length of

10 + 21 + 23 + 20 + 20 + 12 + 35 + 25 + 45 + 55 = 266.
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Chapter 3 Eulerian and Hamiltonian Graphs

This chapter is designed to prepare the student for NCSBE competency goal 1�

objective 1.0.1.c.

The original Konisberg problem depicted in Chapter 1.3 (see Figure 1.2) requires

that the city is �Eulerian�, if modeled as a (multi)graph. We de�ne this concept here

and describe Euler's answer.

3.1 Eulerian Graph and Cycle

An Euler cycle or circuit in a graph G is a simple cycle containing every edge

(exactly once) of G. An Euler path in G is a simple path containing every edge

(exactly once) of G.

The following two facts are useful in determining whether or not a graph has an

Euler cycle or path.

Fact1: A connected graph has an Eulerian cycle or circuit if and only if every

vertex is of even degree.

Fact2: A connected graph has an Eulerian path if and only if it has exactly two

vertices of odd degrees.

So, Euler simply proved that the inhabitants of Konisberg cannot start from a

bank or an island and walk accross all the bridges exactly once and return to their

starting bank because at least one of the banks has an odd degree; clearly, as shown

in Figure 1.2, all the banks have odd degrees. A proposed solution for this city is to

build a minimum of two new bridges. One bridge between Right Bank and Left Bank,

bringing their degree to 4, and one additional bridge between Island and East Side,

bringing their degrees to 6 and 4, respectively. Thus, satisfying the stated condition
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in Fact 3.1.

Figure 3.1: Some simple graphs named G1, G2, G3 (from left to right).

Example 3.1.1. Consider the graphs in Figure 3.1.

(i) G1 contains exactly two vertices of odd degree (b and d). Hence it has an Euler

path, e.g., listing only the order in which the vertices are being visited, we have

d, a, b, c, d, b.

(ii) G2 has exactly two vertices of odd degree (b and d). For instance, listing only the

order in which the vertices are being visited, we have b, a, g, f, e, d, c, g, b, c, f, d.

(iii) G3 has six vertices of odd degree. Hence, it does not have an Euler path.

Note that because none of the graphs has only vertices of even degrees, none has an

Euler cycle. An example of a graph that has an Euler cycle, see Figure 1.3. Clearly

all of its vertices are of even degrees.

3.2 Hamiltonian Graph and Cycle

A Hamiltonian path is a path that visits each vertex of a graph exactly only once.

AHamiltonian cycle is a Hamiltonian path that starts and ends at the same vertex.

A very important graph theory application is called the Traveling Salesperson

Problem (TSP). Given a weighted graph, a TSP asks for the cycle of minimum

total weight which visits each vertex exactly once and returns to its starting point.

So in fact, TSP is equivalent to �nding a Hamilton cycle with minimum total weight

in a graph.

Note: Euler paths and cycles contained every edge only once while Hamiltonian

paths and cycles that contain every vertex exactly once.

Example 3.2.1. Consider the graphs in Figure 3.2.
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Figure 3.2: Some simple graphs named G4, G5, G6 (from left to right).

(i) G4 does not have a Hamilton cycle (Why?), but does have a Hamilton path, say,

a, b, e, d, c.

(ii) G5 has a Hamilton cycle, say, a, b, c, d, e, a.

(iii) G6 has a Hamilton cycle, say a, b, e, d, c, a.

Note: Unlike for an Euler circuit, no simple necessary and su�cient conditions

are known for the existence of a Hamilton circuit. We state this condition here:

Dirac's Theorem (necessary condition): If G is a simple graph with n ≥ 3

vertices such that the degree of every vertex in G is at least dn/2e, then G has a

Hamilton circuit.

Observe that G6 has a Hamilton cycle even though it does not satisfy the necessary

condition of Dirac's Theorem; i.e., not all of its vertices are of degree 3 ≥ 3 = d5/2e.

Also, it is easy to notice that every complete graph on n vertices admits a Hamilton

cycle.

3.3 Activity

I. Practice

For each of the graphs in Figure 3.3, �nd the following:

(a) determine whether the given graph has an Euler circuit. Construct such a circuit

when one exists. If no Euler circuit exists, determine whether the graph has an Euler

path and construct such a path if one exists.

(b) determine whether the given graph has a Hamilton circuit. If it does, �nd such a

circuit. If it does not, give an argument to show why no such circuit exists.

II. Application
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Figure 3.3: Some simple graphs named A, B, C andD (from top-left to bottom-right).

Figure 3.4: A �oor plan

1. The �oor plan shown in Figure 3.4 is for a house that is open for public viewing.

Is it possible to �nd a trail that starts in room A, ends in room B, and passes through

every interior doorway of the house exactly once? If so, �nd such a trail.

2. Consider the graph in Figure 2.5. Suppose that a salesman salesperson wants

to visit all the �ve cities, Detroit, Toledo, Saginaw, Grand Rapids, and Kalamazoo

exactly once, starting and ending in city A. In which order should he visit these cities

to travel the minimum total distance?

3. Find a route with the least total airfare that visits each of the cities of the

graph in Figure 3.5, where the weight on an edge is the least price available for a

�ight between the two cities. What is the total �ights cost?
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Figure 3.5: Flights cost between each pair of cities

3.4 Answers

I. Practice:

(a)

Graph A: To be an Euler circuit the degree of every vertex must be even. Vertices

c and f have odd degrees; deg(c) = 3, deg(f) = 3. Therefore, Graph A has no Euler

circuit. Since Graph A has at most 2 vertices of odd degree, it does have an Euler

path. One such path is ca− ab− bc− cf − fe− ed− df .

Graph B: Since not every vertex has an even degree, deg(a) = 3, deg(b) =

3, deg(c) = 3, deg(f) = 1 it does not have an Euler circuit. Also, because Graph

B has more than 2 vertices of odd degree, it has no Euler path.

Graph C: Not every vertex has an even degree, deg(b) = 3, deg(d) = 3, deg(f) =

3, deg(h) = 3, deg(j) = 3. So, Graph C does not have a Euler circuit. Further, Graph

C has more than 2 vertices of odd degree, hence, it has no Euler path.

Graph D: Not every vertex has an even degree, deg(b) = 3, deg(d) = 3, deg(f) =

3, deg(h) = 3, so, it does not have an Euler circuit. Further, Graph D has more than

2 vertices of odd degree therefore, it does not have an Euler path.

(b)

Graph A: Graph A does not have a Hamiltonian circuit because if we start with

any vertex on either side of vertices c or f we cannot return to our starting point

without repeating vertices. Graph A does have a Hamiltonian path: ab − bc − cf −

fe− ed.
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Graph B: There is no possibility of a Hamiltonian circuit in Graph B because

once you go to vertex f there is no way to leave without returning to vertex e. Graph

B does have a Hamiltonian path: fe− eb− bc− ca− ad.

Graph C: According to Dirac's Theorem, if G is a simple graph with n vertices

with n ≥ 3 such that the degree of every vertex in G is at least n/2, then Ghas a

Hamiltonian circuit. Graph C has 17 vertices. Every vertex in Graph C has a degree

smaller than 17/2. Therefore, it does not have a Hamiltonian circuit.

Graph D: Starting at vertex e, then move to each vertex in the order to vertex

b to vertex a to vertex d to vertex g to vertex h to vertex i to vertex f to vertex c

then back to vertex e, we see that Graph D does have a Hamiltonian circuit.

II. Application

1. Let the �oor plan of the house be represented by the graph in Figure 3.6.

Figure 3.6: Floor plan graph

Each vertex of this graph in Figure 3.6 has even degree except for A and B, each

of which has degree 1. Hence by Fact 3.1, there is an Euler path from A to B. One

such trail is AGHFEIHEKJDCB.

2. To solve this problem we can assume the salesperson starts in Detroit (because

this must be part of the circuit) and examine all possible ways for him to visit the

other four cities and then return to Detroit (starting elsewhere will produce the same

circuits). There are a total of 4!/2 = 12 di�erent routes/circuits as shown in Table 3.1:

From this table, the minimum total distance of 458 miles (shown in bold) is traveled

using the circuit Detroit�Toledo�Kalamazoo�Grand Rapids�Saginaw�Detroit (or its

reverse).
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Table 3.1: List of di�erent routes for the salesperson starting from Detroit

Route Total Distance
Detroit�Toledo�Grand Rapids�Saginaw�Kalamazoo�Detroit 610
Detroit�Toledo�Grand Rapids�Kalamazoo�Saginaw�Detroit 516
Detroit�Toledo�Kalamazoo�Saginaw�Grand Rapids�Detroit 588
Detroit�Toledo�Kalamazoo�Grand Rapids�Saginaw�Detroit 458
Detroit�Toledo�Saginaw�Kalamazoo�Grand Rapids�Detroit 540
Detroit�Toledo�Saginaw�Grand Rapids�Kalamazoo�Detroit 504
Detroit�Saginaw�Toledo�Grand Rapids�Kalamazoo�Detroit 598
Detroit�Saginaw�Toledo�Kalamazoo�Grand Rapids�Detroit 576
Detroit�Saginaw�Kalamazoo�Toledo�Grand Rapids�Detroit 682
Detroit�Saginaw�Grand Rapids�Toledo�Kalamazoo�Detroit 646
Detroit�Grand Rapids�Saginaw�Toledo�Kalamazoo�Detroit 670
Detroit�Grand Rapids�Toledo�Saginaw�Kalamazoo�Detroit 728

3. Consider (by a brute force) all possible ways to visit these cities. We obtain that,

the itinerary SanFrancisco → Denver → Detroit → NewY ork → LosAngeles →

SanFrancisco (or its reverse) gives the least total �ights cost of $179+$229+$189+

$379 + $69 = $1055.

Remark:

The general traveling salesman problem involves �nding a Hamiltonian circuit to

minimize the total distance traveled for an arbitrary graph with n vertices in which

each edge is marked with a distance.

One way to solve the general problem is to by a brute force like the one we just

used for the previous answers 2 and 3; we write down all Hamiltonian circuits starting

and ending at a particular vertex, compute the total distance for each, and pick one

for which this total is minimal. However, even for relatively small values of n, this

method is impractical. For a complete graph on n vertices, we will need to examine

exactly (n− 1)!/2 such circuits. So, for a complete graph on 30 vertices, for instance,

there would be 29!/2 ' 4.42 × 1030 Hamiltonian circuits starting and ending at a

particular vertex to check. As of today, there is no known algorithm for solving

e�ciently the general traveling salesman problem.
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Chapter 4 Vertex Coloring

This Chapter is designed to prepare the student for NCSBE competency goal 1�

objectives 1.0.1.c.

Figure 4.1: A 3-colorable planar graph.

A coloring of a graph G is an assignment of a color to each vertex of G so

that adjacent vertices receive di�erent colors. Such coloring is said to be proper.

The chromatic number of G is the minimum number of colors needed for a proper

coloring of G. We often denote the chromatic number of a graph G by χ(G). (To be

read �chi of G�.) It is easy to see that, for a cycle on n vertices, Cn,

χ(Cn) =


2 if n is even

3 if n is odd.

Also, χ(Kn) = n for any complete graph Kn. χ(Tn) = 2 for any tree Tn.

The notion of graph (vertex) coloring stems from a question asked in 1850's by

a South African mathematician, Francis Guthrie, while trying to color the map of

counties of England. It is well-known as the four-color problem which we restate

as follows:

Can we color the maps of any region on the planet using 4 colors such that any two

countries with a common border are assigned di�erent colors?

The answer to this question is generally accepted to be �yes�, although most

solutions depend on computer algorithms.
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Graphs which admit a proper coloring using k-colors, are said to be k-colorable.

Figure 4.1 shows a graph which is 3-colorable, using colors red, blue and green.

Example 4.0.1. Find χ(G) and χ(H) for the graphs shown in Figure 4.2. Assume

G is on the left side while H is on the right side.

Figure 4.2: Two simple graphs G and H.

The chromatic number of G is at least three, because the vertices a, b, and c must

be assigned di�erent colors. To see if G can be colored with three colors, assign red

to a, blue to b, and green to c. Then, d can (and must) be colored red because it

is adjacent to b and c. Furthermore, e can (and must) be colored green because it

is adjacent only to vertices colored red and blue, and f can (and must) be colored

blue because it is adjacent only to vertices colored red and green. Finally, g can (and

must) be colored red because it is adjacent only to vertices colored blue and green.

This produces a coloring of G using exactly three colors, i.e., χ(G) = 3. Figure 4.3

displays such a coloring.

The graph H is made up of the graph G with an edge connecting a and g. Any

attempt to color H using three colors must follow the same reasoning as that used to

color G, except at the last stage, when all vertices other than g have been colored.

Then, because g is adjacent (in H) to vertices colored red, blue, and green, a fourth

color, say brown, needs to be used. Hence, H has a chromatic number equal to 4,

i.e., χ(H) = 4. We also show a coloring of H in Figure 4.3.

Note: Due to the limit on our use of natural colors, it is customary to use integers

or natural numbers to denote colors assigned to vertices instead.
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Figure 4.3: Two properly colored simple graphs G and H.

4.1 Activity

I. Practice

1. Find the chromatic number of each graph in Figure 3.3.

2. What is the chromatic number of each of the following graphs Wn, Km,n, for any

m, n?

II. Application

Table 4.1: Distance between pairs of 6 six radio stations

1 2 3 4 5 6
1 � 85 175 200 50 100
2 85 � 125 175 100 160
3 175 125 � 100 200 250
4 200 175 100 � 210 220
5 50 100 200 210 � 100
6 100 160 250 220 100 �

1. The chair of the math department meets with six committees, once a month.

How many di�erent meeting times must be used to ensure that no member is scheduled

to attend two meetings at the same time if the committees are:

C1 = {Allagan, Sengupta, Talukder}, C2 = {Sengupta,Ogaja,Kulkarni},

C3 = {Allagan,Kulkarni, Talukder}, C4 = {Ogaja,Kulkarni, Talukder},

C5 = {Allagan, Sengupta}, and C6 = {Sengupta,Kulkarni, Talukder}?

2. Schedule the �nal exams for Math 114, Math 115, Math 118, Math 165, CS

111, CS 114, CS 115, and CS 215, using the fewest number of di�erent time slots, if

there are no students taking both Math 114 and CS 215, both Math 115 and CS 215,
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both Math 165 and CS 111, both Math 165 and CS 114, both Math 114 and Math

115, both Math 114 and Math 118, and both Math 118 and Math 165, but there are

students in every other pair of courses.

3. How many di�erent channels are needed for six stations located at the distances

shown in Table 4.1, if two stations cannot use the same channel when they are within

150 miles of each other?

4.2 Answers

I. Practice:

1.

Graph A: χ(A) = 3; The chromatic number of Graph A is at least three. Vertices

a, b, and c must be assigned di�erent colors. Hence, a sample coloring is: a is colored

red, b is colored blue, and c is colored green. Now, vertices d, e, and f can be colored

with the same three colors. However, vertex f must have a di�erent color from vertex

c because they are adjacent vertices. Therefore, since c is colored green then f could

be colored red or blue. Finally, vertices d and e will be colored di�erently with the

two remaining colors. Here is a 3-coloring: a = red, d = green, b = blue, e = blue,

c = green, f = red.

Graph B: χ(B) = 3; The chromatic number of Graph B is at least three. Vertices

a, b, and c must each be assigned di�erent colors. Hence, a sample coloring is: a

is colored red, bis colored blue, and c is colored green. Now, e has to be colored

di�erently from vertices b and c because they are adjacent vertices. Hence, e would

be colored red just like vertex a. Finally, vertices d and f must be colored di�erently

from vertices a and e. Vertices d and f can be colored the same colors because they

are nonadjacent or they can be colored di�erently. Hence, vertices d and f can be

colored blue or green. Here is a 3-coloring of the graph G. a = red, d = blue or green,

b = blue, e = red, c = green, f = blue or green.

Graph C: χ(C) = 2; The chromatic number of Graph C is at least two. The color of

each vertex is alternated between two colors. So, starting with vertex a, we color it
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red then b is colored blue; c is colored red then h is colored blue; g is colored red then

f is colored blue; e is colored red then d is colored blue. Since vertex o is adjacent

to vertex d, vertex o must be colored red then p is colored blue and q is colored

red. We know this is correct because qis adjacent to h which we colored blue. Now

adjacent to vertex o, vertices i and n can both be colored blue. Vertices j and m are

adjacent to p which is colored blue, so, they are red. Vertices k and l are adjacent to

q which is colored red. Therefore, they are colored blue. Every adjacent vertex has a

di�erent color alternating between red and blue. Here is a 2-coloring of the graph C:

a = red, b = blue, c = red, h = blue, g = red, f = blue, e = red, d = blue, o = red, p =

blue, q = red,m = red, n = blue, j = red, l = blue, k = blue.

Graph D: χ(D) = 2; The chromatic number of Graph D is at least two. Vertices

a, c, e, g, and i can be colored the same. The remaining vertices b, d, f, and h are

colored the same color together but, di�erent from vertices a, c, e, g, and i. Therefore,

a sample coloring is: a, c, e, g, and i are colored red while b, d, f, and h are colored blue.

a = red, b = blue, c = redd = blue, e = red, f = blue, g = red, h = blue, i = red.

2.

(i.) For any Wheel on n vertices,

χ(Wn) =


3 if n is even

4 if n is odd.

(ii.) For any complete bipartite graph, χ(Km,n) = 2 for all m,n.

II. Applications:

1. To determine the minimal number of di�erent meeting times needed to ensure

that no member is scheduled to attend 2 meetings we draw the graph in Figure 2.11,

where vertices represent committees and two vertices are adjacent if the corresponding

committees share a member. For instance, Committee 1, C1 , has members that are

also on every other committees, C2 through C6. So, there is an edge connecting C1

to C2, C3, C4, C5, and C6. The same is true for all other vertices, except C4 and

C5, which are adjacent to other vertices except to each other. The vertices can be

colored as follows: C1 = red, C2 = blue, C3 = yellow, C4 = green, C5 = green, and
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C6 = purple. A minimum of 5 di�erent meeting times is needed to ensure that every

person can attend all of their required meetings with no con�ict.

Figure 4.4: Committee Graph showing committees that share a member in common.

2. To schedule 8 exams so there is no con�ict for students, a graph is drawn as

shown in Figure 4.5 where each vertex represents an exam and an edge connects two

vertices if no student takes those two courses together. For instance, an edge connects

Math 114 with Math115, Math 118 and CS 215 because there were no students taking

both Math 114 and Math 115, both Math 114 and Math 118, and both Math 114

and CS 215. The absence of an edge between two courses is an indication that

at least a student is enrolled in these two courses at the same time. So, we color

the vertices so that non-adjacent vertices are given di�erent colors; in which case

adjacent vertices may be given same color. This graph (con�ict-free) is known as a

complementary graph to a graph which would show the cases where adjacent vertices

indicate con�ict. Note that both graphs, together, form K8, a complete graph on 8

vertices.

Figure 4.5: Courses Graph with no scheduling con�ict.
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Here is a coloring: Math 114, Math 115, and CS 215 � red; Math 165 and CS 114

� blue; CS 111 � green; CS 115 � yellow; and Math 118 � purple.

This previous coloring is equivalent to the following a possible scheduling:

1st Period (red) � M 114, M 115, CS 215

2nd Period (blue) � M 165 and CS 114

3rd Period (green) � CS 111

4th Period (yellow) � CS 115

5th Period (purple) � Math 118.

3. In order to determine how many channels are needed for the 6 stations, we draw

the graph shown in Figure 4.6 to model the problem. Each station is represented by

a vertex. Two vertices are adjacent if the stations are within 150 miles of each other.

Station 1 is adjacent to Stations 2, 5, and 6. Station 2 is adjacent to Stations 1, 3,

and 5. Station 3 is adjacent to Stations 2 and 4. Station 4 is adjacent to Station 3.

Station 5 is adjacent to Stations 1, 2, and 6. Station 6 is adjacent to Stations 1 and

5. Here is a 3-coloring as shown in Figure 4.6. Station 1 = red, Station 2 = blue,

Station3 = red, Station 4 = blue, Station 5 = green, and Station 6 = blue.

Figure 4.6: Radio stations located within 150 miles or less.
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Chapter 5 Conclusion and Future Research

In this thesis, we introduced students to three fundamental research topics commonly

discussed in Graph Theory, with the goal of strengthening their math skills in the

required competency goal 1 in North Carolina. Chapters presented include Spanning

trees which covers competency objectives 1.0.1.a,b, Euler, Hamilton Graphs and Ver-

tex Coloring cover competency objective 1.0.1.c. Most of the activities are relatively

simple and easy to follow. We recommend students to work on Practice problems

�rst, and then move onto the Applications. Students can begin any other chapter,

after completing Chapter 1. A pre-requisite knowledge of how to compute, up to, a

4× 4 determinant is required for Chapter 4 (Spanning trees). Students often �nd it

di�cult to compute the determinant of graphs of order greater than 5, that is why

most of our problems are limited to graphs with order 6 or less. However, with some

counting skills, we think that they can arrive at some of the results of �nding the

number of spanning trees of graphs without resulting to Kirchho�'s theorem [1] which

relies on the computation of determinants. We recommend that future work include

other relevant topics in graph theory such as Chromatic Polynomials which would

target other competency goals and learning objectives. We close the thesis, with the

proposed conjecture, which can lead to further results on counting spanning trees.

A cactus is a simple connected graph in which every pair of cycles share at most

one vertex. We conjecture the following,

Conjecture 5.0.1. Suppose G is a cactus with k cycles of orders m1,m2, . . . ,mk.

Then the number of its spanning trees is
k∏

i=1

mi.
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Appendix

1. F-LE.� Functions:

• Linear, Quadratic, and Exponential Models

• Construct and compare linear and exponential models and solve problems:
NC.M1 and NC.M2 (F-LE. 1 � 5)

2. A-CED.� Algebra: Equations

• Create equations that describe numbers or relationships

• Create inequalities in one variable that represent absolute value, polyno-
mial, exponential, and rational relationships and use them to solve prob-
lems algebraically and graphically: NC. M1 and NC. M2 (A-CED. 1 �
3)

3. S-ID.� Statistics and Probability

• Interpreting Categorical and Quantitative Data

• Summarize and interpret linear models: NC. M1 (S-ID. 7 � 9)

4. GAIMME � Guidelines For Assessment & Instruction In Mathematical Model-
ing Education

5. NC.M1.� North Carolina Math I

6. NC.M2.� North Carolina Math II

7. NCSCOS. � North Carolina Standard Course Of Study
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